Browsed by
Tag: graph based summarization

Mining tag clouds and emoticons behind community feedback

Mining tag clouds and emoticons behind community feedback

Ganesan, K. A., N. Sundaresan, and H. Deo, “Mining tag clouds and emoticons behind community feedback“, WWW ’08: Proceeding of the 17th international conference on World Wide Web, Beijing, China, ACM, pp. 1181–1182, 2008. Abstract In this paper we describe our mining system which automatically mines tags from feedback text in an eCommerce scenario. It renders these tags in a visually appealing manner. Further, emoticons are attached to mined tags to add sentiment to the visual aspect. Download Paper http://dl.acm.org/authorize?943606 Related Articles…

Read More Read More

Opinosis: A Graph Based Approach to Abstractive Summarization of Highly Redundant Opinions

Opinosis: A Graph Based Approach to Abstractive Summarization of Highly Redundant Opinions

The Opinosis Summarization framework focuses on generating very short abstractive summaries from large amounts of text. These summaries can resemble micropinions or “micro-reviews” that you see on sites like twitter and four squares. The idea of the algorithm is to use a word graph data structure referred to as the Opinosis-Graph to represent the text to be summarized. Then, the resulting graph is repeatedly explored to find meaningful paths which in turn becomes candidate summary phrases.